Files
pyasic/pyasic/config/mining.py
2024-05-16 10:26:04 -04:00

566 lines
18 KiB
Python

# ------------------------------------------------------------------------------
# Copyright 2022 Upstream Data Inc -
# -
# Licensed under the Apache License, Version 2.0 (the "License"); -
# you may not use this file except in compliance with the License. -
# You may obtain a copy of the License at -
# -
# http://www.apache.org/licenses/LICENSE-2.0 -
# -
# Unless required by applicable law or agreed to in writing, software -
# distributed under the License is distributed on an "AS IS" BASIS, -
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -
# See the License for the specific language governing permissions and -
# limitations under the License. -
# ------------------------------------------------------------------------------
from __future__ import annotations
from dataclasses import dataclass, field
from pyasic import settings
from pyasic.config.base import MinerConfigOption, MinerConfigValue
from pyasic.web.braiins_os.proto.braiins.bos.v1 import (
HashrateTargetMode,
PerformanceMode,
Power,
PowerTargetMode,
SaveAction,
SetPerformanceModeRequest,
TeraHashrate,
TunerPerformanceMode,
)
@dataclass
class MiningModeNormal(MinerConfigValue):
mode: str = field(init=False, default="normal")
@classmethod
def from_dict(cls, dict_conf: dict | None) -> "MiningModeNormal":
return cls()
def as_am_modern(self) -> dict:
if settings.get("antminer_mining_mode_as_str", False):
return {"miner-mode": "0"}
return {"miner-mode": 0}
def as_wm(self) -> dict:
return {"mode": self.mode}
def as_auradine(self) -> dict:
return {"mode": {"mode": self.mode}}
def as_epic(self) -> dict:
return {"ptune": {"enabled": False}}
def as_goldshell(self) -> dict:
return {"settings": {"level": 0}}
def as_mara(self) -> dict:
return {
"mode": {
"work-mode-selector": "Stock",
}
}
@dataclass
class MiningModeSleep(MinerConfigValue):
mode: str = field(init=False, default="sleep")
@classmethod
def from_dict(cls, dict_conf: dict | None) -> "MiningModeSleep":
return cls()
def as_am_modern(self) -> dict:
if settings.get("antminer_mining_mode_as_str", False):
return {"miner-mode": "1"}
return {"miner-mode": 1}
def as_wm(self) -> dict:
return {"mode": self.mode}
def as_auradine(self) -> dict:
return {"mode": {"sleep": "on"}}
def as_epic(self) -> dict:
return {"ptune": {"algo": "Sleep", "target": 0}}
def as_goldshell(self) -> dict:
return {"settings": {"level": 3}}
def as_mara(self) -> dict:
return {
"mode": {
"work-mode-selector": "Sleep",
}
}
@dataclass
class MiningModeLPM(MinerConfigValue):
mode: str = field(init=False, default="low")
@classmethod
def from_dict(cls, dict_conf: dict | None) -> "MiningModeLPM":
return cls()
def as_am_modern(self) -> dict:
if settings.get("antminer_mining_mode_as_str", False):
return {"miner-mode": "3"}
return {"miner-mode": 3}
def as_wm(self) -> dict:
return {"mode": self.mode}
def as_auradine(self) -> dict:
return {"mode": {"mode": "eco"}}
def as_goldshell(self) -> dict:
return {"settings": {"level": 1}}
@dataclass
class MiningModeHPM(MinerConfigValue):
mode: str = field(init=False, default="high")
@classmethod
def from_dict(cls, dict_conf: dict | None) -> "MiningModeHPM":
return cls()
def as_am_modern(self) -> dict:
if settings.get("antminer_mining_mode_as_str", False):
return {"miner-mode": "0"}
return {"miner-mode": 0}
def as_wm(self) -> dict:
return {"mode": self.mode}
def as_auradine(self) -> dict:
return {"mode": {"mode": "turbo"}}
@dataclass
class StandardTuneAlgo(MinerConfigValue):
mode: str = field(init=False, default="standard")
def as_epic(self) -> str:
return VOptAlgo().as_epic()
@dataclass
class VOptAlgo(MinerConfigValue):
mode: str = field(init=False, default="voltage_optimizer")
def as_epic(self) -> str:
return "VoltageOptimizer"
@dataclass
class ChipTuneAlgo(MinerConfigValue):
mode: str = field(init=False, default="chip_tune")
def as_epic(self) -> str:
return "ChipTune"
@dataclass
class TunerAlgo(MinerConfigOption):
standard = StandardTuneAlgo
voltage_optimizer = VOptAlgo
chip_tune = ChipTuneAlgo
@classmethod
def default(cls):
return cls.standard()
@classmethod
def from_dict(cls, dict_conf: dict | None):
mode = dict_conf.get("mode")
if mode is None:
return cls.default()
cls_attr = getattr(cls, mode)
if cls_attr is not None:
return cls_attr().from_dict(dict_conf)
@dataclass
class MiningModePowerTune(MinerConfigValue):
mode: str = field(init=False, default="power_tuning")
power: int = None
algo: TunerAlgo = field(default_factory=TunerAlgo.default)
@classmethod
def from_dict(cls, dict_conf: dict | None) -> "MiningModePowerTune":
cls_conf = {}
if dict_conf.get("power"):
cls_conf["power"] = dict_conf["power"]
if dict_conf.get("algo"):
cls_conf["algo"] = TunerAlgo.from_dict(dict_conf["algo"])
return cls(**cls_conf)
def as_am_modern(self) -> dict:
if settings.get("antminer_mining_mode_as_str", False):
return {"miner-mode": "0"}
return {"miner-mode": 0}
def as_wm(self) -> dict:
if self.power is not None:
return {"mode": self.mode, self.mode: {"wattage": self.power}}
return {}
def as_bosminer(self) -> dict:
conf = {"enabled": True, "mode": "power_target"}
if self.power is not None:
conf["power_target"] = self.power
return {"autotuning": conf}
def as_boser(self) -> dict:
return {
"set_performance_mode": SetPerformanceModeRequest(
save_action=SaveAction.SAVE_ACTION_SAVE_AND_APPLY,
mode=PerformanceMode(
tuner_mode=TunerPerformanceMode(
power_target=PowerTargetMode(
power_target=Power(watt=self.power)
)
)
),
),
}
def as_auradine(self) -> dict:
return {"mode": {"mode": "custom", "tune": "power", "power": self.power}}
def as_mara(self) -> dict:
return {
"mode": {
"work-mode-selector": "Auto",
"concorde": {
"mode-select": "PowerTarget",
"power-target": self.power,
},
}
}
@dataclass
class MiningModeHashrateTune(MinerConfigValue):
mode: str = field(init=False, default="hashrate_tuning")
hashrate: int = None
throttle_limit: int = None
throttle_step: int = None
algo: TunerAlgo = field(default_factory=TunerAlgo.default)
@classmethod
def from_dict(cls, dict_conf: dict | None) -> "MiningModeHashrateTune":
cls_conf = {}
if dict_conf.get("hashrate"):
cls_conf["hashrate"] = dict_conf["hashrate"]
if dict_conf.get("throttle_limit"):
cls_conf["throttle_limit"] = dict_conf["throttle_limit"]
if dict_conf.get("throttle_step"):
cls_conf["throttle_step"] = dict_conf["throttle_step"]
if dict_conf.get("algo"):
cls_conf["algo"] = TunerAlgo.from_dict(dict_conf["algo"])
return cls(**cls_conf)
def as_am_modern(self) -> dict:
if settings.get("antminer_mining_mode_as_str", False):
return {"miner-mode": "0"}
return {"miner-mode": 0}
def as_bosminer(self) -> dict:
conf = {"enabled": True, "mode": "hashrate_target"}
if self.hashrate is not None:
conf["hashrate_target"] = self.hashrate
return {"autotuning": conf}
def as_boser(self) -> dict:
return {
"set_performance_mode": SetPerformanceModeRequest(
save_action=SaveAction.SAVE_ACTION_SAVE_AND_APPLY,
mode=PerformanceMode(
tuner_mode=TunerPerformanceMode(
hashrate_target=HashrateTargetMode(
hashrate_target=TeraHashrate(
terahash_per_second=self.hashrate
)
)
)
),
)
}
def as_auradine(self) -> dict:
return {"mode": {"mode": "custom", "tune": "ths", "ths": self.hashrate}}
def as_epic(self) -> dict:
mode = {
"ptune": {
"algo": self.algo.as_epic(),
"target": self.hashrate,
}
}
if self.throttle_limit is not None:
mode["ptune"]["min_throttle"] = self.throttle_limit
if self.throttle_step is not None:
mode["ptune"]["throttle_step"] = self.throttle_step
return mode
def as_mara(self) -> dict:
return {
"mode": {
"work-mode-selector": "Auto",
"concorde": {
"mode-select": "Hashrate",
"hash-target": self.hashrate,
},
}
}
@dataclass
class ManualBoardSettings(MinerConfigValue):
freq: float
volt: float
@classmethod
def from_dict(cls, dict_conf: dict | None) -> "ManualBoardSettings":
return cls(freq=dict_conf["freq"], volt=dict_conf["volt"])
def as_am_modern(self) -> dict:
if settings.get("antminer_mining_mode_as_str", False):
return {"miner-mode": "0"}
return {"miner-mode": 0}
@dataclass
class MiningModeManual(MinerConfigValue):
mode: str = field(init=False, default="manual")
global_freq: float
global_volt: float
boards: dict[int, ManualBoardSettings] = field(default_factory=dict)
@classmethod
def from_dict(cls, dict_conf: dict | None) -> "MiningModeManual":
return cls(
global_freq=dict_conf["global_freq"],
global_volt=dict_conf["global_volt"],
boards={i: ManualBoardSettings.from_dict(dict_conf[i]) for i in dict_conf},
)
def as_am_modern(self) -> dict:
if settings.get("antminer_mining_mode_as_str", False):
return {"miner-mode": "0"}
return {"miner-mode": 0}
@classmethod
def from_vnish(cls, web_overclock_settings: dict) -> "MiningModeManual":
# will raise KeyError if it cant find the settings, values cannot be empty
voltage = web_overclock_settings["globals"]["volt"]
freq = web_overclock_settings["globals"]["freq"]
boards = {
idx: ManualBoardSettings(
freq=board["freq"],
volt=voltage if not board["freq"] == 0 else 0,
)
for idx, board in enumerate(web_overclock_settings["chains"])
}
return cls(global_freq=freq, global_volt=voltage, boards=boards)
def as_mara(self) -> dict:
return {
"mode": {
"work-mode-selector": "Fixed",
"fixed": {
"frequency": str(self.global_freq),
"voltage": self.global_volt,
},
}
}
class MiningModeConfig(MinerConfigOption):
normal = MiningModeNormal
low = MiningModeLPM
high = MiningModeHPM
sleep = MiningModeSleep
power_tuning = MiningModePowerTune
hashrate_tuning = MiningModeHashrateTune
manual = MiningModeManual
@classmethod
def default(cls):
return cls.normal()
@classmethod
def from_dict(cls, dict_conf: dict | None):
if dict_conf is None:
return cls.default()
mode = dict_conf.get("mode")
if mode is None:
return cls.default()
cls_attr = getattr(cls, mode)
if cls_attr is not None:
return cls_attr().from_dict(dict_conf)
@classmethod
def from_am_modern(cls, web_conf: dict):
if web_conf.get("bitmain-work-mode") is not None:
work_mode = web_conf["bitmain-work-mode"]
if work_mode == "":
return cls.default()
if int(work_mode) == 0:
return cls.normal()
elif int(work_mode) == 1:
return cls.sleep()
elif int(work_mode) == 3:
return cls.low()
return cls.default()
@classmethod
def from_epic(cls, web_conf: dict):
try:
tuner_running = web_conf["PerpetualTune"]["Running"]
if tuner_running:
algo_info = web_conf["PerpetualTune"]["Algorithm"]
if algo_info.get("VoltageOptimizer") is not None:
return cls.hashrate_tuning(
hashrate=algo_info["VoltageOptimizer"].get("Target"),
throttle_limit=algo_info["VoltageOptimizer"].get(
"Min Throttle Target"
),
throttle_step=algo_info["VoltageOptimizer"].get(
"Throttle Step"
),
algo=TunerAlgo.voltage_optimizer(),
)
else:
return cls.hashrate_tuning(
hashrate=algo_info["ChipTune"].get("Target"),
algo=TunerAlgo.chip_tune(),
)
else:
return cls.normal()
except KeyError:
return cls.default()
@classmethod
def from_bosminer(cls, toml_conf: dict):
if toml_conf.get("autotuning") is None:
return cls.default()
autotuning_conf = toml_conf["autotuning"]
if autotuning_conf.get("enabled") is None:
return cls.default()
if not autotuning_conf["enabled"]:
return cls.default()
if autotuning_conf.get("psu_power_limit") is not None:
# old autotuning conf
return cls.power_tuning(autotuning_conf["psu_power_limit"])
if autotuning_conf.get("mode") is not None:
# new autotuning conf
mode = autotuning_conf["mode"]
if mode == "power_target":
if autotuning_conf.get("power_target") is not None:
return cls.power_tuning(autotuning_conf["power_target"])
return cls.power_tuning()
if mode == "hashrate_target":
if autotuning_conf.get("hashrate_target") is not None:
return cls.hashrate_tuning(autotuning_conf["hashrate_target"])
return cls.hashrate_tuning()
@classmethod
def from_vnish(cls, web_settings: dict):
try:
mode_settings = web_settings["miner"]["overclock"]
except KeyError:
return cls.default()
if mode_settings["preset"] == "disabled":
return MiningModeManual.from_vnish(mode_settings)
else:
return cls.power_tuning(int(mode_settings["preset"]))
@classmethod
def from_boser(cls, grpc_miner_conf: dict):
try:
tuner_conf = grpc_miner_conf["tuner"]
if not tuner_conf.get("enabled", False):
return cls.default()
except LookupError:
return cls.default()
if tuner_conf.get("tunerMode") is not None:
if tuner_conf["tunerMode"] == 1:
if tuner_conf.get("powerTarget") is not None:
return cls.power_tuning(tuner_conf["powerTarget"]["watt"])
return cls.power_tuning()
if tuner_conf["tunerMode"] == 2:
if tuner_conf.get("hashrateTarget") is not None:
return cls.hashrate_tuning(
int(tuner_conf["hashrateTarget"]["terahashPerSecond"])
)
return cls.hashrate_tuning()
if tuner_conf.get("powerTarget") is not None:
return cls.power_tuning(tuner_conf["powerTarget"]["watt"])
if tuner_conf.get("hashrateTarget") is not None:
return cls.hashrate_tuning(
int(tuner_conf["hashrateTarget"]["terahashPerSecond"])
)
@classmethod
def from_auradine(cls, web_mode: dict):
try:
mode_data = web_mode["Mode"][0]
if mode_data.get("Sleep") == "on":
return cls.sleep()
if mode_data.get("Mode") == "normal":
return cls.normal()
if mode_data.get("Mode") == "eco":
return cls.low()
if mode_data.get("Mode") == "turbo":
return cls.high()
if mode_data.get("Ths") is not None:
return cls.hashrate_tuning(mode_data["Ths"])
if mode_data.get("Power") is not None:
return cls.power_tuning(mode_data["Power"])
except LookupError:
return cls.default()
@classmethod
def from_mara(cls, web_config: dict):
try:
mode = web_config["mode"]["work-mode-selector"]
if mode == "Fixed":
fixed_conf = web_config["mode"]["fixed"]
return cls.manual(
global_freq=int(fixed_conf["frequency"]),
global_volt=fixed_conf["voltage"],
)
elif mode == "Stock":
return cls.normal()
elif mode == "Sleep":
return cls.sleep()
elif mode == "Auto":
auto_conf = web_config["mode"]["concorde"]
auto_mode = auto_conf["mode-select"]
if auto_mode == "Hashrate":
return cls.hashrate_tuning(hashrate=auto_conf["hash-target"])
elif auto_mode == "PowerTarget":
return cls.power_tuning(power=auto_conf["power-target"])
except LookupError:
pass
return cls.default()