feature: refactor scaling into mining mode.
This commit is contained in:
607
pyasic/config/mining/__init__.py
Normal file
607
pyasic/config/mining/__init__.py
Normal file
@@ -0,0 +1,607 @@
|
||||
# ------------------------------------------------------------------------------
|
||||
# Copyright 2022 Upstream Data Inc -
|
||||
# -
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"); -
|
||||
# you may not use this file except in compliance with the License. -
|
||||
# You may obtain a copy of the License at -
|
||||
# -
|
||||
# http://www.apache.org/licenses/LICENSE-2.0 -
|
||||
# -
|
||||
# Unless required by applicable law or agreed to in writing, software -
|
||||
# distributed under the License is distributed on an "AS IS" BASIS, -
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -
|
||||
# See the License for the specific language governing permissions and -
|
||||
# limitations under the License. -
|
||||
# ------------------------------------------------------------------------------
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
from pyasic import settings
|
||||
from pyasic.config.base import MinerConfigOption, MinerConfigValue
|
||||
from pyasic.web.braiins_os.proto.braiins.bos.v1 import (
|
||||
DpsHashrateTarget,
|
||||
DpsPowerTarget,
|
||||
DpsTarget,
|
||||
HashrateTargetMode,
|
||||
PerformanceMode,
|
||||
Power,
|
||||
PowerTargetMode,
|
||||
SaveAction,
|
||||
SetDpsRequest,
|
||||
SetPerformanceModeRequest,
|
||||
TeraHashrate,
|
||||
TunerPerformanceMode,
|
||||
)
|
||||
|
||||
from .algo import TunerAlgo
|
||||
from .scaling import ScalingConfig
|
||||
|
||||
|
||||
@dataclass
|
||||
class MiningModeNormal(MinerConfigValue):
|
||||
mode: str = field(init=False, default="normal")
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, dict_conf: dict | None) -> "MiningModeNormal":
|
||||
return cls()
|
||||
|
||||
def as_am_modern(self) -> dict:
|
||||
if settings.get("antminer_mining_mode_as_str", False):
|
||||
return {"miner-mode": "0"}
|
||||
return {"miner-mode": 0}
|
||||
|
||||
def as_wm(self) -> dict:
|
||||
return {"mode": self.mode}
|
||||
|
||||
def as_auradine(self) -> dict:
|
||||
return {"mode": {"mode": self.mode}}
|
||||
|
||||
def as_epic(self) -> dict:
|
||||
return {"ptune": {"enabled": False}}
|
||||
|
||||
def as_goldshell(self) -> dict:
|
||||
return {"settings": {"level": 0}}
|
||||
|
||||
def as_mara(self) -> dict:
|
||||
return {
|
||||
"mode": {
|
||||
"work-mode-selector": "Stock",
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@dataclass
|
||||
class MiningModeSleep(MinerConfigValue):
|
||||
mode: str = field(init=False, default="sleep")
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, dict_conf: dict | None) -> "MiningModeSleep":
|
||||
return cls()
|
||||
|
||||
def as_am_modern(self) -> dict:
|
||||
if settings.get("antminer_mining_mode_as_str", False):
|
||||
return {"miner-mode": "1"}
|
||||
return {"miner-mode": 1}
|
||||
|
||||
def as_wm(self) -> dict:
|
||||
return {"mode": self.mode}
|
||||
|
||||
def as_auradine(self) -> dict:
|
||||
return {"mode": {"sleep": "on"}}
|
||||
|
||||
def as_epic(self) -> dict:
|
||||
return {"ptune": {"algo": "Sleep", "target": 0}}
|
||||
|
||||
def as_goldshell(self) -> dict:
|
||||
return {"settings": {"level": 3}}
|
||||
|
||||
def as_mara(self) -> dict:
|
||||
return {
|
||||
"mode": {
|
||||
"work-mode-selector": "Sleep",
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@dataclass
|
||||
class MiningModeLPM(MinerConfigValue):
|
||||
mode: str = field(init=False, default="low")
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, dict_conf: dict | None) -> "MiningModeLPM":
|
||||
return cls()
|
||||
|
||||
def as_am_modern(self) -> dict:
|
||||
if settings.get("antminer_mining_mode_as_str", False):
|
||||
return {"miner-mode": "3"}
|
||||
return {"miner-mode": 3}
|
||||
|
||||
def as_wm(self) -> dict:
|
||||
return {"mode": self.mode}
|
||||
|
||||
def as_auradine(self) -> dict:
|
||||
return {"mode": {"mode": "eco"}}
|
||||
|
||||
def as_goldshell(self) -> dict:
|
||||
return {"settings": {"level": 1}}
|
||||
|
||||
|
||||
@dataclass
|
||||
class MiningModeHPM(MinerConfigValue):
|
||||
mode: str = field(init=False, default="high")
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, dict_conf: dict | None) -> "MiningModeHPM":
|
||||
return cls()
|
||||
|
||||
def as_am_modern(self) -> dict:
|
||||
if settings.get("antminer_mining_mode_as_str", False):
|
||||
return {"miner-mode": "0"}
|
||||
return {"miner-mode": 0}
|
||||
|
||||
def as_wm(self) -> dict:
|
||||
return {"mode": self.mode}
|
||||
|
||||
def as_auradine(self) -> dict:
|
||||
return {"mode": {"mode": "turbo"}}
|
||||
|
||||
|
||||
@dataclass
|
||||
class MiningModePowerTune(MinerConfigValue):
|
||||
mode: str = field(init=False, default="power_tuning")
|
||||
power: int = None
|
||||
algo: TunerAlgo = field(default_factory=TunerAlgo.default)
|
||||
scaling: ScalingConfig = None
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, dict_conf: dict | None) -> "MiningModePowerTune":
|
||||
cls_conf = {}
|
||||
if dict_conf.get("power"):
|
||||
cls_conf["power"] = dict_conf["power"]
|
||||
if dict_conf.get("algo"):
|
||||
cls_conf["algo"] = TunerAlgo.from_dict(dict_conf["algo"])
|
||||
if dict_conf.get("scaling"):
|
||||
cls_conf["scaling"] = ScalingConfig.from_dict(dict_conf["scaling"])
|
||||
|
||||
return cls(**cls_conf)
|
||||
|
||||
def as_am_modern(self) -> dict:
|
||||
if settings.get("antminer_mining_mode_as_str", False):
|
||||
return {"miner-mode": "0"}
|
||||
return {"miner-mode": 0}
|
||||
|
||||
def as_wm(self) -> dict:
|
||||
if self.power is not None:
|
||||
return {"mode": self.mode, self.mode: {"wattage": self.power}}
|
||||
return {}
|
||||
|
||||
def as_bosminer(self) -> dict:
|
||||
tuning_cfg = {"enabled": True, "mode": "power_target"}
|
||||
if self.power is not None:
|
||||
tuning_cfg["power_target"] = self.power
|
||||
|
||||
cfg = {"autotuning": tuning_cfg}
|
||||
|
||||
if self.scaling is not None:
|
||||
scaling_cfg = {"enabled": True}
|
||||
if self.scaling.step is not None:
|
||||
scaling_cfg["power_step"] = self.scaling.step
|
||||
if self.scaling.minimum is not None:
|
||||
scaling_cfg["min_power_target"] = self.scaling.minimum
|
||||
if self.scaling.shutdown is not None:
|
||||
scaling_cfg = {**scaling_cfg, **self.scaling.shutdown.as_bosminer()}
|
||||
cfg["performance_scaling"] = scaling_cfg
|
||||
|
||||
return cfg
|
||||
|
||||
def as_boser(self) -> dict:
|
||||
cfg = {
|
||||
"set_performance_mode": SetPerformanceModeRequest(
|
||||
save_action=SaveAction.SAVE_ACTION_SAVE_AND_APPLY,
|
||||
mode=PerformanceMode(
|
||||
tuner_mode=TunerPerformanceMode(
|
||||
power_target=PowerTargetMode(
|
||||
power_target=Power(watt=self.power)
|
||||
)
|
||||
)
|
||||
),
|
||||
),
|
||||
}
|
||||
if self.scaling is not None:
|
||||
sd_cfg = {}
|
||||
if self.scaling.shutdown is not None:
|
||||
sd_cfg = self.scaling.shutdown.as_boser()
|
||||
cfg["set_dps"] = (
|
||||
SetDpsRequest(
|
||||
enable=True,
|
||||
**sd_cfg,
|
||||
target=DpsTarget(
|
||||
power_target=DpsPowerTarget(
|
||||
power_step=Power(self.scaling.step),
|
||||
min_power_target=Power(self.scaling.minimum),
|
||||
)
|
||||
),
|
||||
),
|
||||
)
|
||||
return cfg
|
||||
|
||||
def as_auradine(self) -> dict:
|
||||
return {"mode": {"mode": "custom", "tune": "power", "power": self.power}}
|
||||
|
||||
def as_mara(self) -> dict:
|
||||
return {
|
||||
"mode": {
|
||||
"work-mode-selector": "Auto",
|
||||
"concorde": {
|
||||
"mode-select": "PowerTarget",
|
||||
"power-target": self.power,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@dataclass
|
||||
class MiningModeHashrateTune(MinerConfigValue):
|
||||
mode: str = field(init=False, default="hashrate_tuning")
|
||||
hashrate: int = None
|
||||
algo: TunerAlgo = field(default_factory=TunerAlgo.default)
|
||||
scaling: ScalingConfig = None
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, dict_conf: dict | None) -> "MiningModeHashrateTune":
|
||||
cls_conf = {}
|
||||
if dict_conf.get("hashrate"):
|
||||
cls_conf["hashrate"] = dict_conf["hashrate"]
|
||||
if dict_conf.get("algo"):
|
||||
cls_conf["algo"] = TunerAlgo.from_dict(dict_conf["algo"])
|
||||
if dict_conf.get("scaling"):
|
||||
cls_conf["scaling"] = ScalingConfig.from_dict(dict_conf["scaling"])
|
||||
|
||||
return cls(**cls_conf)
|
||||
|
||||
def as_am_modern(self) -> dict:
|
||||
if settings.get("antminer_mining_mode_as_str", False):
|
||||
return {"miner-mode": "0"}
|
||||
return {"miner-mode": 0}
|
||||
|
||||
def as_bosminer(self) -> dict:
|
||||
conf = {"enabled": True, "mode": "hashrate_target"}
|
||||
if self.hashrate is not None:
|
||||
conf["hashrate_target"] = self.hashrate
|
||||
return {"autotuning": conf}
|
||||
|
||||
@property
|
||||
def as_boser(self) -> dict:
|
||||
cfg = {
|
||||
"set_performance_mode": SetPerformanceModeRequest(
|
||||
save_action=SaveAction.SAVE_ACTION_SAVE_AND_APPLY,
|
||||
mode=PerformanceMode(
|
||||
tuner_mode=TunerPerformanceMode(
|
||||
hashrate_target=HashrateTargetMode(
|
||||
hashrate_target=TeraHashrate(
|
||||
terahash_per_second=self.hashrate
|
||||
)
|
||||
)
|
||||
)
|
||||
),
|
||||
)
|
||||
}
|
||||
if self.scaling is not None:
|
||||
sd_cfg = {}
|
||||
if self.scaling.shutdown is not None:
|
||||
sd_cfg = self.scaling.shutdown.as_boser()
|
||||
cfg["set_dps"] = (
|
||||
SetDpsRequest(
|
||||
enable=True,
|
||||
**sd_cfg,
|
||||
target=DpsTarget(
|
||||
hashrate_target=DpsHashrateTarget(
|
||||
hashrate_step=TeraHashrate(self.scaling.step),
|
||||
min_hashrate_target=TeraHashrate(self.scaling.minimum),
|
||||
)
|
||||
),
|
||||
),
|
||||
)
|
||||
return cfg
|
||||
|
||||
def as_auradine(self) -> dict:
|
||||
return {"mode": {"mode": "custom", "tune": "ths", "ths": self.hashrate}}
|
||||
|
||||
def as_epic(self) -> dict:
|
||||
mode = {
|
||||
"ptune": {
|
||||
"algo": self.algo.as_epic(),
|
||||
"target": self.hashrate,
|
||||
}
|
||||
}
|
||||
if self.scaling is not None:
|
||||
if self.scaling.minimum is not None:
|
||||
mode["ptune"]["min_throttle"] = self.scaling.minimum
|
||||
if self.scaling.step is not None:
|
||||
mode["ptune"]["throttle_step"] = self.scaling.step
|
||||
return mode
|
||||
|
||||
def as_mara(self) -> dict:
|
||||
return {
|
||||
"mode": {
|
||||
"work-mode-selector": "Auto",
|
||||
"concorde": {
|
||||
"mode-select": "Hashrate",
|
||||
"hash-target": self.hashrate,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@dataclass
|
||||
class ManualBoardSettings(MinerConfigValue):
|
||||
freq: float
|
||||
volt: float
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, dict_conf: dict | None) -> "ManualBoardSettings":
|
||||
return cls(freq=dict_conf["freq"], volt=dict_conf["volt"])
|
||||
|
||||
def as_am_modern(self) -> dict:
|
||||
if settings.get("antminer_mining_mode_as_str", False):
|
||||
return {"miner-mode": "0"}
|
||||
return {"miner-mode": 0}
|
||||
|
||||
|
||||
@dataclass
|
||||
class MiningModeManual(MinerConfigValue):
|
||||
mode: str = field(init=False, default="manual")
|
||||
|
||||
global_freq: float
|
||||
global_volt: float
|
||||
boards: dict[int, ManualBoardSettings] = field(default_factory=dict)
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, dict_conf: dict | None) -> "MiningModeManual":
|
||||
return cls(
|
||||
global_freq=dict_conf["global_freq"],
|
||||
global_volt=dict_conf["global_volt"],
|
||||
boards={i: ManualBoardSettings.from_dict(dict_conf[i]) for i in dict_conf},
|
||||
)
|
||||
|
||||
def as_am_modern(self) -> dict:
|
||||
if settings.get("antminer_mining_mode_as_str", False):
|
||||
return {"miner-mode": "0"}
|
||||
return {"miner-mode": 0}
|
||||
|
||||
@classmethod
|
||||
def from_vnish(cls, web_overclock_settings: dict) -> "MiningModeManual":
|
||||
# will raise KeyError if it cant find the settings, values cannot be empty
|
||||
voltage = web_overclock_settings["globals"]["volt"]
|
||||
freq = web_overclock_settings["globals"]["freq"]
|
||||
boards = {
|
||||
idx: ManualBoardSettings(
|
||||
freq=board["freq"],
|
||||
volt=voltage if not board["freq"] == 0 else 0,
|
||||
)
|
||||
for idx, board in enumerate(web_overclock_settings["chains"])
|
||||
}
|
||||
return cls(global_freq=freq, global_volt=voltage, boards=boards)
|
||||
|
||||
def as_mara(self) -> dict:
|
||||
return {
|
||||
"mode": {
|
||||
"work-mode-selector": "Fixed",
|
||||
"fixed": {
|
||||
"frequency": str(self.global_freq),
|
||||
"voltage": self.global_volt,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
class MiningModeConfig(MinerConfigOption):
|
||||
normal = MiningModeNormal
|
||||
low = MiningModeLPM
|
||||
high = MiningModeHPM
|
||||
sleep = MiningModeSleep
|
||||
power_tuning = MiningModePowerTune
|
||||
hashrate_tuning = MiningModeHashrateTune
|
||||
manual = MiningModeManual
|
||||
|
||||
@classmethod
|
||||
def default(cls):
|
||||
return cls.normal()
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, dict_conf: dict | None):
|
||||
if dict_conf is None:
|
||||
return cls.default()
|
||||
|
||||
mode = dict_conf.get("mode")
|
||||
if mode is None:
|
||||
return cls.default()
|
||||
|
||||
cls_attr = getattr(cls, mode)
|
||||
if cls_attr is not None:
|
||||
return cls_attr().from_dict(dict_conf)
|
||||
|
||||
@classmethod
|
||||
def from_am_modern(cls, web_conf: dict):
|
||||
if web_conf.get("bitmain-work-mode") is not None:
|
||||
work_mode = web_conf["bitmain-work-mode"]
|
||||
if work_mode == "":
|
||||
return cls.default()
|
||||
if int(work_mode) == 0:
|
||||
return cls.normal()
|
||||
elif int(work_mode) == 1:
|
||||
return cls.sleep()
|
||||
elif int(work_mode) == 3:
|
||||
return cls.low()
|
||||
return cls.default()
|
||||
|
||||
@classmethod
|
||||
def from_epic(cls, web_conf: dict):
|
||||
try:
|
||||
tuner_running = web_conf["PerpetualTune"]["Running"]
|
||||
if tuner_running:
|
||||
algo_info = web_conf["PerpetualTune"]["Algorithm"]
|
||||
if algo_info.get("VoltageOptimizer") is not None:
|
||||
scaling_cfg = None
|
||||
if "Throttle Step" in algo_info["VoltageOptimizer"]:
|
||||
scaling_cfg = ScalingConfig(
|
||||
minimum=algo_info["VoltageOptimizer"].get(
|
||||
"Min Throttle Target"
|
||||
),
|
||||
step=algo_info["VoltageOptimizer"].get("Throttle Step"),
|
||||
)
|
||||
|
||||
return cls.hashrate_tuning(
|
||||
hashrate=algo_info["VoltageOptimizer"].get("Target"),
|
||||
algo=TunerAlgo.voltage_optimizer(),
|
||||
scaling=scaling_cfg,
|
||||
)
|
||||
else:
|
||||
return cls.hashrate_tuning(
|
||||
hashrate=algo_info["ChipTune"].get("Target"),
|
||||
algo=TunerAlgo.chip_tune(),
|
||||
)
|
||||
else:
|
||||
return cls.normal()
|
||||
except KeyError:
|
||||
return cls.default()
|
||||
|
||||
@classmethod
|
||||
def from_bosminer(cls, toml_conf: dict):
|
||||
if toml_conf.get("autotuning") is None:
|
||||
return cls.default()
|
||||
autotuning_conf = toml_conf["autotuning"]
|
||||
|
||||
if autotuning_conf.get("enabled") is None:
|
||||
return cls.default()
|
||||
if not autotuning_conf["enabled"]:
|
||||
return cls.default()
|
||||
|
||||
if autotuning_conf.get("psu_power_limit") is not None:
|
||||
# old autotuning conf
|
||||
return cls.power_tuning(
|
||||
autotuning_conf["psu_power_limit"],
|
||||
scaling=ScalingConfig.from_bosminer(toml_conf, mode="power"),
|
||||
)
|
||||
if autotuning_conf.get("mode") is not None:
|
||||
# new autotuning conf
|
||||
mode = autotuning_conf["mode"]
|
||||
if mode == "power_target":
|
||||
if autotuning_conf.get("power_target") is not None:
|
||||
return cls.power_tuning(
|
||||
autotuning_conf["power_target"],
|
||||
scaling=ScalingConfig.from_bosminer(toml_conf, mode="power"),
|
||||
)
|
||||
return cls.power_tuning(
|
||||
scaling=ScalingConfig.from_bosminer(toml_conf, mode="power"),
|
||||
)
|
||||
if mode == "hashrate_target":
|
||||
if autotuning_conf.get("hashrate_target") is not None:
|
||||
return cls.hashrate_tuning(
|
||||
autotuning_conf["hashrate_target"],
|
||||
scaling=ScalingConfig.from_bosminer(toml_conf, mode="hashrate"),
|
||||
)
|
||||
return cls.hashrate_tuning(
|
||||
scaling=ScalingConfig.from_bosminer(toml_conf, mode="hashrate"),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_vnish(cls, web_settings: dict):
|
||||
try:
|
||||
mode_settings = web_settings["miner"]["overclock"]
|
||||
except KeyError:
|
||||
return cls.default()
|
||||
|
||||
if mode_settings["preset"] == "disabled":
|
||||
return MiningModeManual.from_vnish(mode_settings)
|
||||
else:
|
||||
return cls.power_tuning(int(mode_settings["preset"]))
|
||||
|
||||
@classmethod
|
||||
def from_boser(cls, grpc_miner_conf: dict):
|
||||
try:
|
||||
tuner_conf = grpc_miner_conf["tuner"]
|
||||
if not tuner_conf.get("enabled", False):
|
||||
return cls.default()
|
||||
except LookupError:
|
||||
return cls.default()
|
||||
|
||||
if tuner_conf.get("tunerMode") is not None:
|
||||
if tuner_conf["tunerMode"] == 1:
|
||||
if tuner_conf.get("powerTarget") is not None:
|
||||
return cls.power_tuning(
|
||||
tuner_conf["powerTarget"]["watt"],
|
||||
scaling=ScalingConfig.from_boser(grpc_miner_conf, mode="power"),
|
||||
)
|
||||
return cls.power_tuning(
|
||||
scaling=ScalingConfig.from_boser(grpc_miner_conf, mode="power")
|
||||
)
|
||||
|
||||
if tuner_conf["tunerMode"] == 2:
|
||||
if tuner_conf.get("hashrateTarget") is not None:
|
||||
return cls.hashrate_tuning(
|
||||
int(tuner_conf["hashrateTarget"]["terahashPerSecond"]),
|
||||
scaling=ScalingConfig.from_boser(
|
||||
grpc_miner_conf, mode="hashrate"
|
||||
),
|
||||
)
|
||||
return cls.hashrate_tuning(
|
||||
scaling=ScalingConfig.from_boser(grpc_miner_conf, mode="hashrate"),
|
||||
)
|
||||
|
||||
if tuner_conf.get("powerTarget") is not None:
|
||||
return cls.power_tuning(
|
||||
tuner_conf["powerTarget"]["watt"],
|
||||
scaling=ScalingConfig.from_boser(grpc_miner_conf, mode="power"),
|
||||
)
|
||||
|
||||
if tuner_conf.get("hashrateTarget") is not None:
|
||||
return cls.hashrate_tuning(
|
||||
int(tuner_conf["hashrateTarget"]["terahashPerSecond"]),
|
||||
scaling=ScalingConfig.from_boser(grpc_miner_conf, mode="hashrate"),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_auradine(cls, web_mode: dict):
|
||||
try:
|
||||
mode_data = web_mode["Mode"][0]
|
||||
if mode_data.get("Sleep") == "on":
|
||||
return cls.sleep()
|
||||
if mode_data.get("Mode") == "normal":
|
||||
return cls.normal()
|
||||
if mode_data.get("Mode") == "eco":
|
||||
return cls.low()
|
||||
if mode_data.get("Mode") == "turbo":
|
||||
return cls.high()
|
||||
if mode_data.get("Ths") is not None:
|
||||
return cls.hashrate_tuning(mode_data["Ths"])
|
||||
if mode_data.get("Power") is not None:
|
||||
return cls.power_tuning(mode_data["Power"])
|
||||
except LookupError:
|
||||
return cls.default()
|
||||
|
||||
@classmethod
|
||||
def from_mara(cls, web_config: dict):
|
||||
try:
|
||||
mode = web_config["mode"]["work-mode-selector"]
|
||||
if mode == "Fixed":
|
||||
fixed_conf = web_config["mode"]["fixed"]
|
||||
return cls.manual(
|
||||
global_freq=int(fixed_conf["frequency"]),
|
||||
global_volt=fixed_conf["voltage"],
|
||||
)
|
||||
elif mode == "Stock":
|
||||
return cls.normal()
|
||||
elif mode == "Sleep":
|
||||
return cls.sleep()
|
||||
elif mode == "Auto":
|
||||
auto_conf = web_config["mode"]["concorde"]
|
||||
auto_mode = auto_conf["mode-select"]
|
||||
if auto_mode == "Hashrate":
|
||||
return cls.hashrate_tuning(hashrate=auto_conf["hash-target"])
|
||||
elif auto_mode == "PowerTarget":
|
||||
return cls.power_tuning(power=auto_conf["power-target"])
|
||||
except LookupError:
|
||||
pass
|
||||
return cls.default()
|
||||
Reference in New Issue
Block a user